Publications about or mentioning CIMR
Baur, M.J., Jagdhuber, T., Feldman, A.F., Akbar, R., Entekhabi, D., (2019) Estimation of relative canopy absorption and scattering at L-, C- and X-bands, Remote Sensing of Environment, Volume 233, 111384, https://doi.org/10.1016/j.rse.2019.111384
Braakmann-Folgmann, A. and Donlon, C. (2019), Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network, The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019
Chaparro, D., Duveiller, G., Piles, M., Cescatti, A., Vall-llossera, M., Camps, A., Entekhabi, D. (2019), Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices, Remote Sensing of Environment, Volume 232, 111303, doi:10.1016/j.rse.2019.111303
Ciani, D., Santoleri, R., Liberti, G. L., Prigent, C., Donlon, C., & Buongiorno Nardelli, B. (2019), Copernicus Imaging Microwave Radiometer (CIMR) Benefits for the Copernicus Level 4 Sea-Surface Salinity Processing Chain. Remote Sensing, 11(15), 1818.https://doi.org/10.3390/rs11151818
Colliander, A., Mousavi, M., Marshall, S., Samimi, S., Kimball, J. S., Miller, J. Z., et al. (2022). Ice sheet surface and subsurface melt water discrimination using multi-frequency microwave radiometry. Geophysical Research Letters, 49, e2021GL096599. https://doi.org/10.1029/2021GL096599
Jiménez, C., Tenerelli, J., Prigent, C., Kilic, L., Lavergne, T., Skarpalezos, S., et al. (2021). Ocean and sea ice retrievals from an end-to-end simulation of the Copernicus Imaging Microwave Radiometer (CIMR) 1.4–36.5 GHz measurements. Journal of Geophysical Research: Oceans, 126, e2021JC017610. https://doi.org/10.1029/2021JC017610
Karthikeyan, L., Pan, M., Konings, A.G., Piles, M., Fernandez-Moran, R., Kumar, D.N., Wood, E.F. (2019), Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil moisture using X-band AMSR-E observations, Remote Sensing of Environment, Volume 234, 111473, https://doi.org/10.1016/j.rse.2019.111473
Kilic, L., Prigent, C., Aires, F., Boutin, J., Heygster, G., Tonboe, R. T., Roquet, H., Jimenez, C., and Donlon, C. (2018), Expected performances of the Copernicus Imaging Microwave Radiometer (CIMR) for an all‐weather and high spatial resolution estimation of ocean and sea ice parameters. Journal of Geophysical Research: Oceans, 123, doi: 10.1029/2018JC014408
Kilic, L., Prigent, C., Boutin, J., Meissner, T., English, S., and Yueh, S. (2019) Comparisons of Ocean Radiative Transfer Models with SMAP and AMSR2 Observations, Journal of Geophysical Research: Oceans, doi: 10.1029/2019JC015493.
Kilic, L.; Prigent, C.; Aires, F.; Heygster, G.; Pellet, V.; Jimenez, C. (2020), Ice Concentration Retrieval from the Analysis of Microwaves: A New Methodology Designed for the Copernicus Imaging Microwave Radiometer. Remote Sensing, 12, 1060, https://doi.org/10.3390/rs12071060
Kilic, L., Prigent, C., Jimenez, C., & Donlon, C. (2021). A sensitivity analysis from 1 to 40 GHz for observing the Arctic Ocean with the Copernicus Imaging Microwave Radiometer. Ocean Science, 17(2), 455-461.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T. (2019), Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49-78, doi: 10.5194/tc-13-49-2019
Lavergne, T., Piñol Solé, M., Down, E., and Donlon, C. (2021): Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission, The Cryosphere, 15, 3681–3698, doi: https://doi.org/10.5194/tc-15-3681-2021
Le Traon, P.Y., Repucci, A., Álvarez-Fanjul, E., et al., (2019) From Observation to Information and Users: The Copernicus Marine Service Perspective, Frontiers in Marine Science, 6, 234, . https://doi.org/10.3389/fmars.2019.00234
Mateo-Sanchis, A., Piles, M., Muñoz-Marí, J., Adsuara, J.E., Pérez-Suay, A., Camps-Valls, G., (2019) Synergistic integration of optical and microwave satellite data for crop yield estimation, Remote Sensing of Environment, 234, 111460, https://doi.org/10.1016/j.rse.2019.111460,
Meissner T, Manaster A. SMAP Salinity Retrievals near the Sea-Ice Edge Using Multi-Channel AMSR2 Brightness Temperatures. (2021) Remote Sensing; 13(24):5120. https://doi.org/10.3390/rs13245120
Nielsen-Englyst, P., L Høyer, J., Toudal Pedersen, L., L Gentemann, C., Alerskans, E., Block, T., & Donlon, C. (2018). Optimal estimation of sea surface temperature from AMSR-E. Remote Sensing, 10(2), 229. https://doi.org/10.3390/rs10020229
O'Carroll, Anne G.; Armstrong, Edward M.; Beggs, Helen; Bouali, Marouan; Casey, Kenneth S.; Corlett, Gary K.; Dash, Prasanjit; Donlon, Craig; Gentemann, Chelle L.; Høyer, Jacob L. (2019). Observational needs of sea surface temperature. Frontiers in Marine Science, 6, [420]. https://doi.org/10.3389/fmars.2019.00420
Pearson, K.; Good, S.; Merchant, C.J.; Prigent, C.; Embury, O.; Donlon, C. (2019), Sea Surface Temperature in Global Analyses: Gains from the Copernicus Imaging Microwave Radiometer. Remote Sensing, 11, 2362, https://doi.org/10.3390/rs11202362
Prigent, C., Jimenez, C., and P. Bousquet, (2019), ‘Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2)’, Journal of Geophysical Research: Atmosphere, 124, https://doi.org/10.1029/2019JD030711
Prigent, C.; Kilic, L.; Aires, F.; Pellet, V.; Jimenez, C. (2020), Ice Concentration Retrieval from the Analysis of Microwaves: Evaluation of a New Methodology Optimized for the Copernicus Imaging Microwave Radiometer. Remote Sensing, 12, 1594, https://doi.org/10.3390/rs12101594
Prigent, C., & Jimenez, C. (2021). An evaluation of the synergy of satellite passive microwave observations between 1.4 and 36 GHz, for vegetation characterization over the Tropics. Remote Sensing of Environment, 257, 112346.
Scarlat, R. C., Spreen, G., Heygster, G., Huntemann, M., Paţilea, C., Toudal Pedersen, L., & Saldo, R. (2020). Sea Ice and Atmospheric Parameter Retrieval From Satellite Microwave Radiometers: Synergy of AMSR2 and SMOS Compared With the CIMR Candidate Mission. Journal of Geophysical Research: Oceans, 125, e2019JC015749. https://doi.org/10.1029/2019JC015749
Soriot, C., Picard, G., Prigent, C., Frappart, F. and Domine, F (2022). Year-round sea ice and snow characterization from combined passive and active microwave observations and radiative transfer modeling, Remote Sensing of Environment, Volume 278, https://doi.org/10.1016/j.rse.2022.113061
Soriot, C., Prigent, C. , Jimenez, C., Frappart, F. (2022). Arctic sea ice thickness estimation from passive microwave satellite observations between 1.4 and 36 GHz, Earth and Space Science, https://doi.org/10.1029/2022EA002542
Reference Documents
Aires, F., C. Prigent, F. Bernardo, C. Jiménez, R. Saunders, and P. Brunel, (2011) A Tool to Estimate Land-Surface Emissivities at Microwave Frequencies (TELSEM) for use in numerical weather prediction. Quart. J. Roy. Meteor. Soc., 137, 690–699, doi:10.1002/qj.803.
Aires, F., Prigent, C., Rossow, W. B., & Rothstein, M. (2001). A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. Journal of Geophysical Research: Atmospheres, 106(D14), 14887-14907.
Albergel, C. C. Rüdiger, T. Pellarin, J. C. Calvet, N. Fritz, F. Froissard, D. Suquia, A. Petitpa, B. Piguet, E. Martin, (2008), From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci., vol.12, 1323-1337.
Andersen, S., R. Tonboe, L. Kaleschke, G. Heygster, and L. T. Pedersen (2006), Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res., 112, C08004, doi:10.1029/2006JC003543.
Ashcroft, P. and F. J. Wentz, (2000), Algorithm Theoretical Basis Document for AMSR-E Level 2A Algorithm. Revised Nov. 3, 2000, Santa Rosa, CA, Remote Sensing Systems, available from https://nsidc.org/sites/nsidc.org/files/technical-references/amsr_atbd_…
Backus GE, Gilbert JF, (1967), Numerical applications of a formalism for geophysical inverse problems. Geophys. J. R. Astron. Soc. Jul; 1967 13(1–3):247–276.
Backus GE, Gilbert JF, (1968),Resolving power of gross Earth data. Geophys. J. R. Astron. Soc. Oct; 1968 16(2):169–205.
Bauer, P., and R. Bennartz, (1998), Tropical Rainfall Measuring Mission microwave imaging capabilities for the observation of rain clouds, Radio Sci., 33(2), 335–349, doi:10.1029/97RS02049
Bell, S., (1999), Measurement Good Practice Guide No. 11 (Issue 2) A Beginner’s Guide to Uncertainty of Measurement, National Physical Laboratory, UK, available from http://publications.npl.co.uk/npl_web/pdf/mgpg11.pdf
Bertino, L., Breivik, L.A., Dinessen, F., Faugere, Y., Garric, G., Hackett, B., Johannessen, J.A., Lavergne, T., Le traon, P.-Y., Pedersen, L.-T., Rampal, P., Sandven S., Schyberg H. (2016). Copernicus Marine Environment Monitoring Service Position paper: Polar and snow cover applications User Requirements Workshop
Bender, M. A., T. P. Marchok, C. R. Sampson, J.A. Knaff, and M. J. Morin, 2017: Impact of Storm Size on Prediction of Storm Track and Intensity Using the 2016 Operational GFDL Hurricane Model. Wea. Forecasting, 32, 1491–1508, doi: 10.1175/WAF-D-16-0220.1
Bokhorst, S., Pedersen, S.H., Brucker, L. et al. (2016), Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts, Ambio, 45, pp. 516–537, doi: 10.1007/s13280-016-0770-0
Brackmmann-Folgmann, A. and C. Donlon, (2019), Estimating Snow Depth on Arctic Sea Ice using satellite Microwave Radiometry and a Neural Network, submitted to Cryosphere discussions, February 2019.
Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, M. H. Savoie, (2012), EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS International Journal of Geo-Information, 1(1):32-45, doi:10.3390/ijgi1010032.
Brodzik, M. J., B. Billingsley, T. Haran, B. Raup, M. H. Savoie, (2014), Correction: Brodzik, M. J. et al. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS International Journal of Geo-Information 2012, 1, 32-45. ISPRS International Journal of Geo-Information, 3(3):1154-1156, doi:10.3390/ijgi3031154.
Brucker, L., and T. Markus, (2013), Arctic-scale assessment of satellite passive microwave-derived snow depth on sea ice using Operation IceBridge airborne data. Journal of Geophysical Research-Oceans 118: 2892–2905.
Brucker, L., Dinnat, E.P. and Koenig, L.S. (2014). Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions-Part 1: Product description.
Brun, E., Vionnet, V., Decharme, B., Peings, Y., Valette, R., Karbou, F., and Morin, S. (2013). Simulation of northern Eurasian local snow depth, mass and density using a detailed snowpack model and meteorological reanalyses. J. Hydrometeorol., 14, 203–219.
Buongiorno Nardelli, B. (2012). A novel approach for the high-resolution interpolation of in situ sea surface salinity. J. Atmos. Ocean. Technol. 29, 867–879. doi: 10.1175/JTECH-D-11-00099.1
Buongiorno Nardelli, B., Droghei, R., and Santoleri, R. (2016). Multi- dimensional interpolation of SMOS sea surface salinity with surface temperature and in situ salinity data. Remote Sens. Environ. 180, 392–402. doi: 10.1016/j.rse.2015.12.052
Cavalieri, D. J., J. P. Crawford, M. R. Drinkwater, D. T. Eppler, L. D. Farmer, R. R. Jentz, and C. C. Wackerman (1991), Aircraft active and passive microwave validation of the sea ice concentration from the Defence Meteorological Satellite Program Special Sensor Microwave Imager, J. Geophys. Res., 96(C12), 21,998– 22,008
Cavalieri, D.J., T. Markus, A. Ivanoff, et al. (2012), A comparison of snow depth on sea ice retrievals using airborne altimeters and an AMSR-E simulator. IEEE Transactions on Geoscience and Remote Sensing 50: 3027–3040.
Chelton, D. B. and F. J. Wentz, (2005), Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research, Amer. Meteorol. Soc., vol. 86, no. 8, pp. 1097–1115, Aug. 2005.
Cho, E.; Tuttle, S.E.; Jacobs, J.M. (2017), Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2, Remote Sens., 9, 465.
Cohen, J., J. Lemmetyinen, J. Pulliainen, K. Heinilä, F. Montomoli, J. Seppänen, and M. T. Hallikainen (2015). The effect of boreal forest canopy in satellite snow mapping – a multisensor analysis. IEEE Trans Geosci Remote Sensing, 52(6): 3275-3288.
Comiso, J., (1995) SSM/I sea ice concentration using the bootstrap algorithm, NASA reference publication 1390, 57 pp, available from https://www.geobotany.uaf.edu/library/pubs/ComisoJC1995_nasa_1380_53.pd…;
Comiso, J. C., and R. Kwok (1996), Surface and radiative characteristics of the summer Arctic sea ice cover from multisensor satellite observations, J. Geophys. Res., 101(C12), 28397–28416, doi:10.1029/96JC02816.
Comiso, J., D. Cavalieri, and T. Markus, (2003), Sea ice concentration, ice temperature and snow depth using AMSR-E data,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 243–252.
Comiso, J., D. Cavalieri, and T. Markus, (2003), Sea ice concentration, ice temperature and snow depth using AMSR-E data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2, pp. 243–252.
De Jeu, R., Owe, M., (2003) Further validation of a new methodology for Surface soil moisture and vegetation optical depth retrieval. Int. J. Remote Sens. 24, 4559-4578.
Donlon, C. J., K. S. Casey, I. S. Robinson, C. L. Gentemann, R. W. Reynolds, I. Barton, O. Arino, J Stark, N. Rayner, P. LeBorgne, D. Poulter, J. Vazquez-Cuervo, E. Armstrong, H. Beggs, D. Llewellyn Jones, P. J. Minnett, C. J. Merchant, R. Evans, (2009), The GODAE High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP), Oceanography, Volume 22, Number 3, 34-45.
Donlon, C. J., M. Martin, J. D. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, (2012), The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA), Remote Sensing of the Environment, 116, 140-158, doi: 10.1016/j.rse.2010.10.017.
Dorigo, W et al, (2017), ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Rem. Sens. of Env., 203, 185–215
Droghei, R., Nardelli, B. B., and Santoleri, R. (2016). Combining in situ and satellite observations to retrieve salinity and density at the ocean surface. J. Atmos. Ocean. Technol. 33, 1211–1223. doi: 10.1175/JTECH-D-15-0194.1
Droghei, R. B. Buongiorno-Nardelli and R. Santolieri, (2018), A New Global Sea Surface Salinity and Density Dataset From Multivariate Observations (1993–2016), Front. Mar. Sci., 27, doi: 10.3389/fmars.2018.00084
Drüe, C. and G. Heinemann, (2004), High-resolution maps of the sea-ice concentration from MODIS satellite data,” Geophys. Res. Lett., vol. 31, no. 20, pp. L20403-1–L20403.
Du, J., J. S. Kimball and L. A. Jones, (2015), Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2, in IEEE Transactions on Geoscience and Remote Sensing, vol. 53, no. 5, pp. 2520-2531, doi: 10.1109/TGRS.2014.2361344
Duchossois G., P. Strobl, V. Toumazou, S. Antunes, A. Bartsch, T. Diehl, F. Dinessen, P. Eriksson, G. Garric, M-N. Houssais, M. Jindrova, J. Muñoz-Sabater, T. Nagler, O. Nordbeck, User Requirements for a Copernicus Polar Mission - Phase 1 Report, EUR 29144 EN , Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-80961-3, JRC111067, doi:10.2760/22832.
Duchossois G., P. Strobl, V. Toumazou, S. Antunes, A. Bartsch, T. Diehl, F. Dinessen, P. Eriksson, G. Garric, K. Holmlund, M-N. Houssais, M. Jindrova, M. Kern, J. Muñoz-Sabater, T. Nagler, O. Nordbeck, E. de Witte, User Requirements for a Copernicus Polar Mission - Phase 2 Report, EUR 29144 EN , Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-80960-6, doi:10.2760/44170, JRC111068
Emery, W. J., Fowler, C. W. & Maslanik, J. A. (1997) Satellite-derived maps of Arctic and Antarctic sea ice motion: 1988–1994. Geophys. Res. Lett. 24, 897–900.
Entekhabi, D. et al., (2008), The Soil Moisture Active/Passive Mission (SMAP), IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, 2008, pp. III - 1-III - 4. doi: 10.1109/IGARSS.2008.4779267
Eppler, D.; Farmer, L.; Lohanick, A.; Anderson, M.; Cavalieri, D.; Comiso, J.; Glorsen, P.; Garrity, C.; Grenfell, T.; Hallikainen, M.; et al. (1992), Passive microwave signatures of sea ice. In Microwave Remote Sensing of Sea Ice, in Carsey, F.D., Ed.; American Geophysical Union: Washington, DC, USA, 1992; doi:10.1029/GM068p0047.
Ermida, S. L., Jiménez, C., Prigent, C., Trigo, I. F., & DaCamara, C. C. (2017). Inversion of AMSR-E observations for land surface temperature estimation: 2. Global comparison with infrared satellite temperature. Journal of Geophysical Research Atmospheres, 122 (6), 3348-3360.
ESA, (2019), CSC-4 Long Term Scenario (LTS), ESA/PB-EO(2019)10, 7 February 2019, available from the European Space Agency.
ESSB-HB-E-003 working group, (2011), ESA Pointing error engineering handbook, ESSB-HB-E-003, version 1, 19th July 2011.
European Commision, An integrated European Union policy for the Arctic, Joint Communication to the European Parliament and the Council, available at https://cimr.eu/sites/cimr.met.no/files/documents/160427_joint-communic…;
Fernandez-Moran, R.; Al-Yaari, A.; Mialon, A.; Mahmoodi, A.; Al Bitar, A.; De Lannoy, G.; Rodriguez-Fernandez, N.; Lopez-Baeza, E.; Kerr, Y.; Wigneron, J.-P. (2017), SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product. Remote Sens. 9, 457.
Freitas, S. C., I. Trigo, J. Macedo, C. Barroso, R. Silva, and R Perdigao, (2013), Land Surface Temperature from multiple geostationary satellites. Int. J. Rem. Sens., Vol 34, pp. 3051-3068.
Gabarro, C., A. Turiel, P. Elosegui, J.A. Pla-Resina, and M. Portabella, (2017), New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator, The Cryosphere, 11, 1987–2002, doi: 10.5194/tc-11-1987-2017
Gaiser, P. W. et al., (2004), The WindSat spaceborne polarimetric microwave radiometer: sensor description and early orbit performance, in IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 11, pp. 2347-2361, Nov. 2004. doi: 10.1109/TGRS.2004.836867
Garcia-Eidell, C., J. C. Comiso, E. Dinnat, and L. Brucker (2017), Satellite observed salinity distributions at high latitudes in the Northern Hemisphere: A comparison of four products, J. Geophys. Res. Oceans, 122, 7717–7736, doi:10.1002/2017JC013184.
Gentemann, C. L. ,T. Meissner, and F. J. Wentz, (2010), Accuracy of satellite sea surface temperatures at 7 and 11 GHz,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1009–1018.
Girard-Ardhuin, F.; Ezraty, R. (2012), Enhanced Arctic Sea Ice Drift Estimation Merging Radiometer and Scatterometer Data. IEEE Trans. Geosci. Remote Sens., 50, 2639–2648.
Grenfell, T. C., Barber, D. G., Fung, A. K., Gow, A. J., Jezek, K. C., Knapp, E. J., Nghiem, S. V., Onstott, R. G., Perovich, D. K., Roesler, C. S., Swift, C. T., and Tanis, F., (1998), Evolution of electromagnetic signatures of sea ice from initial formation to the establishment of thick first year ice, IEEE T. Geosci. Remote, 36, 1642–1654, 1998.
Grenfell, T. C., Cavalieri, D. J., Comiso, J. C., Drinkwater, M. R., Onstott, R. G., Rubinstein, I., Steffen, K., and Winebrenner, D. P., (1992), Considerations for microwave remote sensing of thin sea ice, in: Microwave Remote Sensing of Sea Ice, edited by: Carsey, F. D., American Geophysical Union, Washington, D.C., doi:10.1029/GM068p0291.
Grenfell, T. C., Cavalieri, D. J., Comiso, J. C., Drinkwater, M. R., Onstott, R. G., Rubinstein, I., Steffen, K., and Winebrenner, D. P.(1992), Considerations for microwave remote sensing of thin sea ice, in: Microwave Remote Sensing of Sea Ice, edited by: Carsey, F. D., American Geophysical Union, Washington, D.C., doi:10.1029/GM068p0291.
Guerreiro, K., Fleury, S., Zakharova, E., Kouraev, A., Rémy, F., and Maisongrande, P.,(2017), Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: toward an improved Envisat freeboard retrieval, The Cryosphere, 11, 2059-2073, doi: 10.5194/tc-11-2059-2017, 2017.
Gu, H and A. W. England, (2007), AMSR-E data resampling with near circular synthesized footprint shape and noise/reduction trade-off study, IEEE Tras. GeoSci and Rem. Sens, 45(10), pp. 3193-3203
Hall, D., Kelly, R. E. J., Riggs, G. A., Chang, A. T. C., & Foster, J. L. (2002). Assessment of the relative accuracy of hemispheric-scale snow-cover maps. Annals of Glaciology, 34, 24–30.
Hallikainen, M., and P. Jolma (1992), Comparison of algorithms for retrieval of snow water equivalent from Nimbus-7 SMMR data in Finland, IEEE Trans. Geosci. Remote Sens., 30(1), 124–131, doi:10.1109/36.124222.
Hanjsek, I., G. Parrella, H. Rott, T. Nagler, C. Derksen and J. Lemmetyinen, 2017. Identification of needs and requirements for a space mission on snow mass. Technical Note 1, v1.2. ESTEC Contract No. 4000118310/16/NL/FF/gp.
Heil, P., Fowler, C. W. & Lake, S. E. (2006), Antarctic sea-ice velocity as derived from SSM/I imagery. Ann. Glaciol. Ser. 44, 361–366.
Heygster, G., Huntemann, M., Ivanova, N., Saldo, R., and Pedersen, L. T. (2014), Response of passive microwave sea ice concentration algorithms to thin ice, Proceedings Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, 13–18 July, Quebec City, QC, 3618–3621, doi:10.1109/IGARSS.2014.6947266.
Hilburton, H and F. J. Wentz, (2008), Inter-calibrated Passive Microwave Rain Products from the Unified Microwave Ocean Retrieval Algorithm (UMORA), J. Applied Met. And Climatology, 778-794, doi: 10.1175/2007JAMC1635.1
Hollinger, J., R. Lo, G. Poe, R. Savage, and J. Peirce, (1987), Special sensor microwave / imager user’s guide, Naval Research Laboratory, Washington, DC, Dec. 14, 1987.
Holmes, T. R. H., De Jeu, R. A. M., Owe, M., & Dolman, A. J. (2009). Land surface temperature from Ka band (37 GHz) passive microwave observations. Journal of Geophysical Research: Atmospheres, 114(D4).
Huang, Y., S. Huang and J. Sun (2018), Experiments on navigating resistance of an icebreaker in snow covered level ice, Cold Regions Science and Technology,v152, 1-14, doi: 10.1016/j.coldregions.2018.04.007.
Huntemann, M., Heygster, G., Kaleschke, L., Krumpen, T., Mäkynen, M., and Drusch, M., (2014), Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations, The Cryosphere, 8, 439-451, doi: 10.5194/tc-8-439-2014.
Imaoka, K., M. KAchi, M. Kashara, N. Ito, K. Nakagowa and T. Oki, (2010), Instrument performance and calibrationof AMSR-E and AMSR2, Int. Archive of Photorammetrey, Rem. Sens. And spatial Information Science, XXXVIII, part 8, Kyoto, Japan.
IPCC, (2018), Global Warming of 1.5°C, SR15 available from http://www.ipcc.ch/report/sr15/
ITU, 2016, Radio Regulations, Edition 2016, available from https://www.itu.int
Ivanova, N., Johannessen, O. M., Pedersen, L. T., and Tonboe, R. T., (2014), Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice algorithms, IEEE T. Geosci. Remote, 52, 7233–7246, 2014.
Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R., Dybkjær, G., Brucker, L., and Shokr, M., (2015), Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations, The Cryosphere, 9, 1797-1817, doi: 10.5194/tc-9-1797-2015.
JCGM, 2008, Evaluation of measurement data — Guide to the expression of uncertainty in measurement JCGM 100:2008, GUM 1995 with minor corrections, First edition September 2008, available from http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
JAXA, Japan Aerospace Exploration Agency (2005), AMSR-E Data Users Handbook, 3rd ed., Saitama, Japan.
JAXA, Japan Aerospace Exploration Agency (2005), Aqua AMSR-E Level 1 Product Format Description Document, MAS-100045A
Jiménez, C., Prigent, C., Ermida, S. L., & Moncet, J. L. (2017). Inversion of AMSR-E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature. Journal of Geophysical Research Atmospheres, 122 (6), 3330-3347.
Jiménez, C., D. B. Clark, J. Kolassa, F. Aires, and C. Prigent, A joint analysis of modeled soil moisture fields and satellite observations, (2013) J. Geophys. Res. Atmos., 118, 6771–6782, doi:10.1002/jgrd.50430.
Kaefer, L. S and R. F. Harrington (1983), Radiometer Requirements for Earth-Observation Systems Using Large Space Antennas, NASA reference publication, NASA-RP-1101 19830020139, available from https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19830020139.pdf
Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonboe, R. T., (2010), A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice, The Cryosphere, 4, 583–592, doi:10.5194/tc-4- 583-2010, 2010.
Kaleschke, L., X. Tian-Kunze, N. Maaß, A. Beitsch, A. Wernecke, M. Miernecki, Gerd Müller, B. H. Fock, A. M.U. Gierisch, K. H. Schlünzen, T. Pohlmann, M. Dobrynin, S. Hendricks, J. Asseng, R. Gerdes, P. Jochmann, N. Reimer, J. Holfort, C. Melsheimer, G. Heygster, G. Spreen, S. Gerland, J. King, N. Skou, S. Schmidl Søbjærg, C. Haas, F. Richter, and T. Casal, (2016), SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone, Rem. Sen. of Env., 180, 264-273, doi: 10.1016/j.rse.2016.03.009.
Karvonen, J., (2014), Baltic Sea ice concentration estimation based on C-band dual-polarized SAR data, IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5558–5566, doi: 10.1109/TGRS.2013.2290331.
Karvonen, J., (2017), Baltic Sea Ice Concentration Estimation Using SENTINEL-1 SAR and AMSR2 Microwave Radiometer Data, in IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 5, pp. 2871-2883.
doi: 10.1109/TGRS.2017.2655567
Kasahara, M., K. Imaoka, M. KAchi, H. Fujii, K. Naoki et al, (2012), Status of AMSR2 on GCOM-W1, Proc. SPIE 8533, Senors, Systems and Next Generation Satellites XVI, 853307, doi: 10.1117/12.975810.
Kazumori, M., (2012), A retrieval algorithm of atmospheric water vapor and cloud liquid water for AMSR-E, Eur. J. Remote Sens., vol. 45 pp. 63–74, doi: 10.5721/EuJRS20124507.
Kelly, R.E.J., Chang, A.T.C, Tsang, L. and Foster, J.L. (2003) Development of a prototype AMSR-E global snow area and snow volume algorithm, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 230-242.
Kelly, R., A. Chang, L.Tsang, and J. Foster (2003). A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens., 41(2), 230-242.
Kelly, R. E. J. (2009). The AMSR-E Snow Depth Algorithm: Description and Initial Results. Journal of The Remote Sensing Society of Japan, 29(1), 307-317.
Kern, S., Khvorostovsky, K., Skourup, H., Rinne, E., Parsakhoo, Z. S., Djepa, V., Wadhams, P., and Sandven, S., (2015), The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise, The Cryosphere, 9, 37–52, doi:10.5194/tc-9-37-2015.
Kilic L., Tonboe R., Prigent C., Heygster G., (2019), Estimating the snow depth, the snow-ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and Ice Mass Balance buoys data, The Cryosphere, 13(4), 1283-1296.
Knaff, J. A., C. R. Sampson, and K. D. Musgrave, (2018), Statistical tropical cyclone wind radii prediction using climatology and persistence: Updates for the western North Pacific, Wea. Forecasting, doi: 10.1175/WAF-D-18-0027.1.
Kolassa, J., Gentine, P., Prigent, C., Aires, F., & Alemohammad, S. H. (2017), Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sensing of Environment, 195, 202-217.
Konings, A.G.; K. A McColl; M. Piles; D. Entekhabi (2015). How Many Parameters Can Be Maximally Estimated From a Set of Measurements? IEEE Geoscience and Remote Sensing Letters. 12 - 5, pp. 1081 - 1085.
Konings, A.G., M. Piles; K. Rotzer; K.A. McColl; S. K. Chan; D. Entekhabi (2016), Vegetation optical depth and scattering albedo retrieval using time series of dual polarized L-band radiometer observations. Remote Sensing of Environment, Vol. 172, pp. 178 - 189.
Konings, A.G., M. Piles, N. Das, D. Entekhabi (2017), L-Band Vegetation Optical Depth and Effective Scattering Albedo Estimation from SMAP, Remote Sensing of the Environment, Vol. 198, pp 460-470
Kontu, A., J. Lemmetyinen, J. Pulliainen, J. Seppänen, and M. T. Hallikainen (2014). Observation and modeling of the microwave brightness temperature of snow-covered frozen lakes and wetlands. IEEE Trans Geosci. Remote Sensing, 52(6), 3275-3288.
Kruopis, N., J. Praks, A. Arslan, H. Alasalmi, J. Koskinen and M. Hallikainen (1999). Passive microwave measurements of snow-covered forests in EMAC’95. IEEE Trans Geosci Remote Sensing, 37, 2699-2705.
Kurtz, N.T., Farrell, S.L., Studinger, M., Galin, N., Harbeck, J.P., Lindsay, R., Onana, V.D., Panzer, B., Sonntag, J.G. (2013), Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data, The Cryosphere, 7, pp. 1035–1056, doi: 10.5194/tc-7-1035-2013.
Kwok, R., Schweiger, A., Rothrock, D. A., Pang, S. & Kottmeier, C. (1998), Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J. Geophys. Res. 103, 8191–8214.
Langlois, A., A. Royer, F. Dupont, A. Roy, K. Goïta, and G. Pickard (2011). Improved corrections of forest effects on passive microwave satellite remote sensing of snow over boreal and subarctic regions. IEEE Trans. Geosci. Remote Sens., 49(10), 3824-3836.
Larue F., A. Royer, D. De Sève, A. Langlois, A. Roy and L. Brucker (2016). Validation analysis of the GlobSnow-2 database over an eco-climatic latitudinal gradient in Eastern Canada. Remote Sensing of Environment, 194, 264-277.
Lavergne, T.; Eastwood, S.; Teffah, Z.; Schyberg, H.; Breivik, L.A. (2010), Sea ice motion from low-resolution satellite sensors: An alternative method and its validation in the Arctic. J. Geophys. Res. Oceans, doi:10.1029/2009JC005958.
Lavergne, T., (2016a), Low Resolution Sea Ice Drift Product User’s Manual, Ocean & Sea Ice SAF GBL LR SID — OSI-405-c, Version 1.8 — July 2016 available from http://osisaf.met.no/docs/
Lavergne, T., (2016b), Ocean & Sea Ice SAF Algorithm Theoretical Basis Document for the OSI SAF Low Resolution Sea Ice Drift Product GBL LR SID — OSI-405-c Version 1.3 — May 2016
Laxon, S.W.; Giles, K.A.; Ridout, A.L.; Wingham, D.J.; Willatt, R.; Cullen, R.; Kwok, R.; Schweiger, A.; Zhang, J.; Haas, C.; Hendricks, S.; Krishfield, R.; Kurtz, N.; Farrell S.; Davidson, M. (2013), CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 1-6. doi:10.1002/grl.50193
Ledley, T. S. (1991). Snow on sea ice: Competing effects in shaping climate. Journal of Geophysical Research, 96, 17,195–17,208. https://doi.org/10.1029/91JD01439.
Lee, S.-M., B.-J. Sohn, and S.-J. Kim, 2017: Differentiating between first-year and multiyear sea ice in the Arctic using microwave-retrieved ice emissivities. J. Geophys. Res. Atmos., 122, 5097-5112, doi: 10.1002/2016JD026275.
Lemmetyinen, J., A. Kontu, J-P. Kärnä, J. Vehviläinen, M. Takala, and J. Pulliainen (2011). Correcting for the influence of frozen lakes in satellite microwave radiometer observations through application of a microwave emission model. Remote Sens. Environ., 115(12), 3695-3706.
Leppäranta, M. (1983). A growth model for black ice, snow ice and snow thickness in subarctic basins. Hydrology Research, 14(2), 59–70.
Li, Q. and R.E.J. Kelly (2017) Correcting satellite passive microwave brightness temperatures in forested landscapes using satellite visible reflectance estimates of forest transmissivity, IEEE Journal of Selected Topics in Applied Remote Sensing; doi: 10.1109/JSTARS.2017.2707545
Liu, Y and P. Minnett, (2016), Sampling errors in satellite-derived infrared sea-surface temperatures Part I: Global and Regional MODIS fields, Rem. Sens. Env., 177, 48-64, doi: 10.1016/j.rse.2016.02.026
Long DG, Daum DL, (1998), Spatial resolution enhancement of SSM/I data. IEEE Trans. Geosci. Remote Sens. Mar; 1998 36(2):407–417.
Long, D. G. (2016), Optimum Image Formation for Spaceborne Microwave Radiometer Products, IEEE, Tras. Geosci. Re,. Sens., 54(5(, 2763-2779, doi:10.1109/TGRS.2015.2505677
Long, D. G., (2017), Polar Applications of Spaceborne Scatterometers, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 5, pp. 2307-2320. doi: 10.1109/JSTARS.2016.2629418
Lu, J., G. Heygster and G. Spreen, "Atmospheric Correction of Sea Ice Concentration Retrieval for 89 GHz AMSR-E Observations," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 5, pp. 1442-1457, May 2018. doi: 10.1109/JSTARS.2018.2805193.
Maass, N., Kaleschke, L., Tian-Kunze, X., Tonboe, R.T., (2015). Snow thickness retrieval from L-band brightness temperatures: a model comparison. Ann. Glaciol. 56 (69), 9–17.
Maeda, K., A. Shibata and K. Imaoka, (2011), Protection of 6–7 GHz band spaceborne microwave radiometer from interferences to derive sea surface temperature and others, IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, 2011, pp. 4217-4220. doi: 10.1109/IGARSS.2011.6050161
Maeda, K., Y. Taniguchi and K. Imaoka, (2016), GCOM-W1 AMSR2 Level 1R Product: Dataset of Brightness Temperature Modified Using the Antenna Pattern Matching Technique, IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 2.
Maekynen, M., Cheng, B., and Similae, M. (2013), On the accuracy of thin-ice thickness retrieval using MODIS thermal imagery over Arctic first-year ice, Ann. Glaciol., 62, 87–96, doi:10.3189/2013AoG62A166.
Markus, T., D. Cavalieri, A. Gasiewski, M. Klein, J. Maslanik, D. Powell, B. Stankov, J. Stroeve and M. Sturm (2006). Microwave Signatures of Snow on Sea Ice: Observations. IEEE Trans. Geosci. Remote Sens., 44, 3081-3090. doi:10.1109/TGRS.2006.883134
Mätzler, C., E. Schanda, and W. Good (1982). Towards the definition of optimum sensor specifications for microwave remote sensing of snow. IEEE Trans. Geosci. Remote Sens., GE-20, 57-66.
Maykut, G. A. (1978). Energy exchange over young sea ice in the central Arctic. Journal of Geophysical Research, 83, 3646–3658. https://doi.org/10.1029/JC083iC07p03646
Meier, W. N., J. S. Stewart, Y. Liu, J. Key and J. A. Miller, (2017), Operational Implementation of Sea Ice Concentration Estimates From the AMSR2 Sensor," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 9, pp. 3904-3911. doi: 10.1109/JSTARS.2017.2693120
Meier, W.N., Hovelsrud, G.K., van Oort, B.E., Key, J.R., Kovacs, K.M., Michel, C., Haas, C., Granskrog, M.A., Gerland, S., Perovich, D.K., Makshtas, A., Reist, J.D., 2014. Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity. Rev. Geophys. 52 (3), 185e217.
Meissner, T. and F. J. Wentz, (2012), The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3004–3026.
Meissner, T. and F. J. Wentz, (2016), Remote Sensing Systems SMAP Ocean Surface Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 2.0 validated release. Remote Sensing Systems, Santa Rosa, CA, USA. Available online at www.remss.com/missions/smap
Meissner, T. and Wentz, F. J. (2012), The emissivity of the ocean surface between 6–90 GHz over a large range of wind speeds and Earth incidence angles, IEEE T. Geosci. Remote, 50, 3004–3026.
Meissner, T., F. J. Wentz, and D. Draper, (2011), GMI calibration algorithm and analysis theoretical basis document, version F,” Remote Sens. Syst., Santa Rosa, CA, USA, Tech. Rep. 111311.
Meissner, T.. and F. Wentz, (2002), An updated analysis of the ocean surface wind direction signal in passive microwave brightness temperatures, IEEE Trans. Geosci. Remote Sens., vol. 40, no. 6, pp. 1230–1240.
Meissner, T., L. Ricciardulli, and F.J. Wentz, (2017), Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms. Bull. Amer. Meteor. Soc., 98, 1660–1677, doi: 10.1175/BAMS-D-16-0052.1
Melsheimer, C., Heygster, G. and Pedersen, L.T., (2008), Integrated retrieval of surface and atmospheric parameters over the Arctic from AMSR-E satellite microwave radiometer data using inverse methods. IGARSS2008, IEEE International Geoscience and Remote Sensing Symposium (Vol. 4, pp. IV-986).
Meredith, M. , A. Sundfjord, S. Henson, A. Meijers, E. Murphy, R. Bellerby, M. Daase, F. Cottier, M. Belchier, M. Chierici, I. Ellingsen, S. Falk-Petersen, S. Hill, P. Holland, G. Tarling, P. Trathan, J. Turner, J. Wilkinson, L. Batchellier, L. Capper, J. Oliver, 2018, The State of the Polar Oceans 2018: Making Sense of Our Changing World, United Kingdom Foreign and Commonwealth Office as part of the UK-Norway Memorandum of Understanding on Polar Research and Cultural Heritage, available from www.gov.uk/government/publications/uk-norway-memorandum-of-understandin…
Merkouriadi, I., B. Cheng, R. M. Graham, A. Rosel and M. A. Granskog, (2017), Critical role of snow on sea ice growth, J. Geophys. Res. Lett., 44, 10,479–10,485. Doi: 10.1002/2017GL075494
Moesinger, L., Dorigo, W., Jeu, R. de, Schalie, R. van der, Scanlon, T., Teubner, I., Forkel, M., (2019). The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA. Earth System Science Data Discussions 1-26
Mohammed, P. N., M. Aksoy, J. R. Piepmeier, J. T. Johnson and A. Bringer, (2016), SMAP L-Band Microwave Radiometer: RFI Mitigation Prelaunch Analysis and First Year On-Orbit Observations, in IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 10, pp. 6035-6047. doi: 10.1109/TGRS.2016.2580459
Naoki, K., Ukita, J., Nishio, F., Nakayama, M., Comiso, J. C., and Gasiewski, A., (2008), Thin sea ice thickness as inferred from passive microwave and in situ observations, J. Geophys. Res., 113, C02S16, doi:10.1029/2007JC004270.
NASA, (2014), SMAP Handbook Soil Moisture Active Passive, Mapping Soil Moisture and freeze/Thaw from space, available from https://smap.jpl.nasa.gov/mission/description/
Nielsen-Englyst, P. L., J. Høyer, L. Toudal Pedersen, C. Gentemann, E. Alerskans, T. Block, C. Donlon, (2018) Optimal Estimation of Sea Surface Temperature from AMSR-E., Remote Sens., 10, 229.
Njoku, E. G., T. J. Jackson, V. Lakshmi, T. K. Chan and S. V. Nghiem, (2003), Soil moisture retrieval from AMSR-E, in IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 2, pp. 215-229, doi: 10.1109/TGRS.2002.808243
Olmedo, E., I. Taupier-Letage, A. Turiel, and A. Alvera-Azcárate, (2018), Improving SMOS Sea Surface Salinity in the Western Mediterranean Sea through Multivariate and Multifractal Analysis. Remote Sens., 10, 485.
Olmedo, E., J. Martínez, A. Turiel, J. Ballabrera-Poy, M. Portabella, (2017), Debiased non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity, In Remote Sensing of Environment, Volume 193, 2017, Pages 103-126, ISSN 0034-4257, doi: 10.1016/j.rse.2017.02.023.
OSI-SAF, (2017), Improving the effective temperature estimation over sea ice using low frequency microwave radiometer data and Arctic buoys.
Owe, M., De Jeu, R., & Walker, J. (2001). A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote Sensing, 39, 1643-1654.
Owe, M., De Jeu, R., Holmes, T. (2008). Multisensor Historical Climatology of Satellite-Derived Global Land Surface Moisture. Journal of Geophysical Research. 113. 10.1029/2007JF000769.
Pațilea, C., Heygster, G., Huntemann, M., and Spreen, G.: Combined SMAP/SMOS Thin Sea Ice Thickness Retrieval, The Cryosphere Discuss., doi: 10.5194/tc-2017-168, in press, 2017.
Pearson, K. J., C. J. Merchant, O. Embury and C. Donlon, (2018), The Role of Advanced Microwave Scanning Radiometer 2 Channels Within an Optimal Estimation Scheme for Climate Data Records of Sea Surface Temperature, Remote Sens. 2018, 10, 90; doi:10.3390/rs10010090
Pedersen, L. T., R. Saldo, (2016), Sea Ice Concentration (SIC) Round Robin Data Package. Sea ice climate change initiative phase 2. Doc Ref: SICCI-RRDP-07-16, v. 1.4, May 07, available from http://www.esa-seaice-cci.org/
Perovich, D. K. (1996). The optical properties of sea ice (no. MONO-96-1). Hanover, NH: Cold regions research and engineering lab.
Picard, G., L. Brucker, A. Roy, F. Dupont, M. Fily, and A. Royer (2013). Simulation of the microwave emission of multi-layered snowpacks using the dense media radiative transfer theory: the DMRT-ML model. Geosci Model Devel, 6, 1061-1078.
Piepmeier et al., (2016), SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit, IEEE Transactions On Geoscience And Remote Sensing, Vol. 55, NO. 4.
Poe, G. A., (1990), Optimum interpolation of imaging microwave radiometer data, IEEE Trans. on Geoscience and Remote Sensing, GE-28, pp. 800-810.
Preston-Thomas, H, (1990), The International Temperature Scale of 1990 (ITS-90), Metrologia 27, 107 (1990).
Prigent, C., Jimenez, C., & Aires, F. (2016). Toward “all weather,” long record, and real-time land surface temperature retrievals from microwave satellite observations. Journal of Geophysical Research Atmospheres, 121(10), 5699-5717.
Prigent, C., F. Aires, F. Bernardo, J.‐C. Orlhac, J.‐M. Goutoule, H. Roquet, and C. Donlon (2013), Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition of MICROWAT, a new mission concept, J. Geophys. Res. Oceans, 118, 3074–3086, doi:10.1002/jgrc.20222.
Prigent, C., F. Papa, F. Aires, C. Jimenez, W.B. Rossow, E. Matthews, (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure Geophys. Res. Lett., 39, L08403, 5 pp., doi: 10.1029/2012GL051276.
Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews, (2007) Global inundation dynamics inferred from multiple satellite observations, 1993-2000, 112, D12107, J. Geophys. Res., doi:10.1029/2006JD007847.
Prigent, C., F. Aires, W. B. Rossow, E. Matthews, (2001) Joint characterization of vegetation by satellite observations from visible to microwave wavelength: A sensitivity analysis, Journal of Geophysical Research, 106, 20665-20685.
Pulliainen, J., J.-P. Kärnä, and M. T. Hallikainen (1993). Development of geophysical retrieval algorithms for the MIMR. IEEE Trans. Geosci. Remote Sens., 31, 268–277.
Pulliainen, J. T., J. Grandell, and M. T. Hallikainen (1999). HUT Snow Emission Model and its Applicability to Snow Water Equivalent Retrieval. IEEE Trans. Geosci. Remote Sens., 37(3), 1378-1390.
Pulliainen, J. and M. Hallikainen, (2001), Retrieval of Regional Snow Water Equivalent from Space-Borne Passive Microwave Observations, In Remote Sensing of Environment, Volume 75, Issue 1, Pages 76-85, ISSN 0034-4257, doi: 10.1016/S0034-4257(00)00157-7.
Pulliainen, J. (2006). Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ., 101, 257-269.
Rasmussen, E., and J. Turner, Eds., 2003: Polar Lows. Cambridge University Press, 612 pp.
Rahmstorf S., (2002), Ocean circulation and climate during the past 120,000 years, Nature volume 419, pages 207–214.Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, A. Mouche, J. Tenerelli, F. Collard, J.F. Piolle, A. Fore, S. Yueh, J. Cotton, P. Francis, Y. Quilfen, and V. Kudryavtsev, 2017: A New Generation of Tropical Cyclone Size Measurements from Space. Bull. Amer. Meteor. Soc., 98, 2367–2385, doi: 10.1175/BAMS-D-15-00291.1
Reul, N., J. Tenerelli, J. Boutin, B. Chapron, F. Paul, E. Brion, F. Gaillard, and O. Archer (2012a), Overview of the first SMOS sea surface salinity products. Part I: Quality assessment for the second half of 2010, IEEE Trans. Geosci. Remote Sens., 50(5), 1636–1647, doi:10.1109/ TGRS.2012.2188408.
Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, Y. Quilfen, S. Guimbard, and J. F. Piolle, (2016), A revised L-band radio-brightness sensitivity to extreme winds under tropical cyclones: The five year SMOS-storm database. Remote Sens. Environ., 180, 274–291, doi: 10.1016/j.rse.2016.03.011.
Reul, N., J. Tenerelli, B. Chapron, D. Vandemark, Y. Quilfen, and Y. Kerr (2012b), SMOS satellite L-band radiometer: A new capability for ocean surface remote sensing in hurricanes, J. Geophys. Res., 117, C02006, doi:10.1029/2011JC007474.
Reul, N., B. Chapron, E. Zabolotskikh, C. Donlon, A. Mouche, J. Tenerelli, F. Collard, J.F. Piolle, A. Fore, S. Yueh, J. Cotton, P. Francis, Y. Quilfen, and V. Kudryavtsev, 2017:A New Generation of Tropical Cyclone Size Measurements from Space. Bull. Amer. Meteor. Soc., 98, 2367–2385, doi: 10.1175/BAMS-D-15-00291.1
Richter, F., M. Drusch, L. Kaleschke, N. Maaß, X. Tian-Kunze, and S. Mecklenburg, (2018), Arctic sea ice signatures: L-band brightness temperature sensitivity comparison using two radiation transfer models, The Cryosphere, 12, 921-933, doi: 10.5194/tc-12-921-2018.
Rio, M.-H., Santoleri R., (2018), Improved global surface currents from the merging of altimetry and Sea Surface Temperature data, Remote Sensing of Environment, ISSN 0034-4257, doi: 10.1016/j.rse.2018.06.003.
Roberts, J. et al. ‘Evolution of South Atlantic density and chemical stratification across the last deglaciation.’ PNAS (2016). DOI: 10.1073/pnas.1511252113
Robinson, W. D., C. Kummerow, and W. S. Olson, (1992), A technique for enhancing and matching the resolution of microwave measurements from the SSM/I instrument, IEEE Trans. Geosci. Remote Sens., 30, 419-429, 1992.
Rodríguez-Fernández, N., de Rosnay, P., Albergel, C., Richaume, P., Aires, F., Prigent, C., & Kerr, Y. (2019). SMOS Neural Network Soil Moisture Data Assimilation in a Land Surface Model and Atmospheric Impact. Remote Sensing, 11(11), 1334.
Rostosky, P., Spreen, G., Farrell, S. L., Frost, T., Heygster, G., & Melsheimer, C. (2018). Snow depth retrieval on Arctic sea ice from passive microwave Radiometers - Improvements and extensions to multiyear ice using lower frequencies. Journal of Geophysical Research: Oceans, 123, doi: 10.1029/2018JC014028.
Roy, A., A. Royer, J.-P. Wigneron, A. Langlois, J. Bergeron, and P. Cliche (2012). A simple parameterization for a boreal forest radiative transfer model at microwave frequencies. Remote Sens. Environ., 124, 371-383.
Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Korablev, A. (2012), TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic, Ocean Sci., 8, 633-656, doi: 10.5194/os-8-633-2012.
Sampson, C., and A. Schrader, (2000), The automated tropical cyclone forecasting system (Version 3.2). Bull. Amer. Meteor. Soc., 81(6), 1231-1240, doi: 10.1175/1520-0477(2000)081
Schmitt, A.U., L. Kaleschke, (2018), A Consistent Combination of Brightness Temperatures from SMOS and SMAP over Polar Oceans for Sea Ice Applications. Remote Sens., 10, 553.
Scott, K. A. , E. Li and A. Wong, (2014), Sea Ice Surface Temperature Estimation Using MODIS and AMSR-E Data Within a Guided Variational Model Along the Labrador Coast," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 7, no. 9, pp. 3685-3694, doi: 10.1109/JSTARS.2013.2292795
Screen, J. A. and I. Simmonds, 2010, the central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334-
Serreze, M. C. & Francis, J. A, 2006, The Arctic amplification debate. Clim. Change 76, 241–264.
Smirnova, J.E., Zabolotskikh, E.V., Bobylev, L.P. et al. (2016), Statistical characteristics of polar lows over the Nordic Seas based on satellite passive microwave data, Izv. Atmos. Ocean. Phys., vol. 52, pp. 1128–1136, doi: 10.1134/S0001433816090255
Smith, D. M., (1996), Extraction of winter total sea-ice concentration in the Greenland and Barents Seas from SSM/I data, International Journal of Remote Sensing, 17:13, 2625-2646, DOI: 10.1080/01431169608949096
Spreen, G., L. Kaleschke, and G. Heygster (2008), Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.
Soldo, Y. , D. M. Le Vine, P. de Matthaeis and P. Richaume, (2017), L-Band RFI Detected by SMOS and Aquarius, in IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7, pp. 4220-4235, July 2017. doi: 10.1109/TGRS.2017.2690406
Spreen, G., L. Kaleschke, and G. Heygster (2008), Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.
Stephen, K, (2018), Societal Impacts of a rapidly changing Arctic, Current Climate Change Reports (2018) 4:223–237, https://doi.org/10.1007/s40641-018-0106-1
Stogryn, A., (1978), Estimates of brightness temperatures from scanning radiometer data, IEEE Trans. on Antennas Propagation, AP-26, pp. 720-726.
Stroeve, J.C., T. Markus, J. A. Maslanik, D. J. Cavalieri, A. J. Gasiewski, J. F. Heinrichs, J. and M. Sturm, M. (2006). Impact of Surface Roughness on AMSR-E Sea Ice Products. IEEE Trans Geosci. Re, Sens., 44 (11), 3103-3117. doi:10.1109/TGRS.2006.880619
Sturm, M., and R. Massom, (2010). Snow on sea ice. In D. Thomas & G. Dieckmann (Eds.), Sea ice (2nd ed), (pp. 153–204). Oxford, UK: Wiley-Blackwell.
Svendsen, E., Matzler, C., and Grenfell, Th. (1987), A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz, Int. J. Remote Sens., 8, 1479–1487.
Svendsen, E., K. Kloster, B. Farrelly, O. M. Johannessen, J. A. Johannessen, W. J. Campbell, P. Gloersen, D. Cavalieri, and C. Matzler (1983), Norwegian remote sensing experiment: Evaluation of the NIMBUS 7 Scanning Multichannel Microwave Radiometer for sea ice research, J. Geophys. Res., 88(C5), 2781 – 2791.
Swift, C.T., D.J. Cavalieri, P. Gloersen, H.J. Zwally, N.M. Mognard, W.J. Campbell, L.S. Fedor, S. Peteherych, (1995), Observations of the Polar Regions from Satellites using Active and Passive Microwave Techniques, in Saltzman, B (Ed.), Advances in Geophysics, 27, 335-392, doi: 10.1016/S0065-2687(08)60409-4.
Takala, M., J. Pulliainen, S. Metsämäki and J. Koskinen (2009). Detection of Snowmelt Using Spaceborne Microwave Radiometer Data in Eurasia From 1979 to 2007. IEEE Transactions on Geoscience and Remote Sensing, 47 (9), 2996-3007.
Takala, M., J. Pulliainen, S. Metsämäki and J. Koskinen (2009). Detection of Snowmelt Using Spaceborne Microwave Radiometer Data in Eurasia From 1979 to 2007. IEEE Transactions on Geoscience and Remote Sensing, 47 (9), 2996-3007.
Takala M., K. Luojus, J. Pulliainen, C. Derksen, J. Lemmetyinen, J.-P. Kärnä, J. Koskinen and B. Bojkov (2011). Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sensing of Environment, 115, 3517-3529.
Tedesco, M., and J. Jeyaratnam (2016). A new operational snow retrieval algorithm applied to historical AMSR-E brightness temperatures. Remote Sens., 8, 1037; doi: 10.3390/ns8121037.
Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M., and Krumpen, T. (2014), SMOS-derived thin sea ice thickness: algorithm baseline, product specifications and initial verification, The Cryosphere, 8, 997-1018, doi: 10.5194/tc-8-997-2014.
Tsang, L., J. A. Kong, and R. T. Shin (1985). Theory of Microwave Remote Sensing. New York: Wiley.
Tsang, L., C.-T. Chen, A. T. C. Chang, J. Guo, and K.-H. Ding (2000). Dense media radiative transfer theory based on quasi-crystalline approximation with applications to microwave remote sensing of snow. Radio Sci., 35(3), 731 - 749.
Tonboe, R., G. Dybkjaer and J. L. Hoeyer (2011), Simulations of the snow covered sea ice surface temperature and microwave effective temperature, Tellus A: Dynamic Meteorology and Oceanography, 63:5,1028-1037, doi: 10.1111/j.1600-0870.2011.00530.x
Tonboe, R. T., Eastwood, S., Lavergne, T., Sørensen, A. M., Rathmann, N., Dybkjær, G., Pedersen, L. T., Høyer, J. L., and Kern, S. (2016), The EUMETSAT sea ice concentration climate data record, The Cryosphere, 10, 2275-2290, doi: 10.5194/tc-10-2275-2016
Tsutsui, H.; Maeda, T. (2017), Possibility of Estimating Seasonal Snow Depth Based Solely on Passive Microwave Remote Sensing on the Greenland Ice Sheet in Spring. Remote Sens., 9, 523.
UNESCO, (1985), The international system of units (SI) in oceanography, UNESCO Technical Papers No. 45, IAPSO Pub. Sci. No. 32, Paris, France.
Vihma, T., (2014), Effects of Arctic sea ice decline on weather and climate: A review, Surveys Geophys., vol. 35, no. 5, pp. 1175–1214.
Wagner, W. G. Lemoine, and H. Rott, (1999), A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Rem. Sens. of Env., vol.70, 191-207.
Walker, N.; Partington, K.; Van Woert, M.; Street, T. (2006), Arctic sea ice type and concentration mapping using passive and active microwave sensors. IEEE Trans. Geosci. Remote Sens. 44, 3574–3584.
Wang, D., C. Prigent, L. Kilic, S. Fox, C. Harlow, C. Jimenez, F. Aires, C. Grassotti, and F. Karbou (2017). Surface emissivity at microwaves to millimeter waves over polar regions: Parameterization and evaluation with aircraft experiments. J. Atmos. Ocean. Techno. 34, 5, 1039-1059.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., Aleksandrov, Y. I., and Colony, R. (1999), Snow depth on Arctic sea ice, J. Climate, 12, 1814–1829.
Wentz, F. J., (1997), A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res., vol. 102, no. C4, pp. 8703–8718.
Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, (2000a), Satellite measurements of sea surface temperature through clouds, Science, vol. 288, no. 5467, pp. 847–850, May 2000.
Wentz , F. J. and T. Meissner, (2000b), Algorithm theoretical basis document (ATBD) version 2 AMSR ocean algorithm, Remote Sens. Syst., Santa Rosa, CA, USA, Tech. Rep. 121599A-1.
Wentz F. J. and T. Meissner, (2007), Supplement 1: Algorithm theoretical basis document for AMSR-E ocean algorithms, Remote Sens. Syst., Santa Rosa, CA, USA, Tech. Rep. 051707.
Wentz F. J. and T. Meissner, (2016), Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations, Radio Sci., vol. 51, no. 5, pp. 381–391.
Werner, K., M. Fritz, N. Morata, K. Keil, A. Pavlov, I. Peeken, A. Nikolopoulos, H. S. Findlay, M. Kędra, S. Majaneva, A. Renner, S. Hendricks, M. Jacquot, M. Nicolaus, M. O'Regan, M. Sampei, C. Wegner, 2016, Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic, Polar Science, Volume 10, Issue 3, 364-373, https://doi.org/10.1016/j.polar.2016.04.005.
Wiebe, H., G. Heygster and L. Meyer-Lerbs 2008: Geolocation of AMSR-E Data. IEEE Trans. Geosci. and Remote Sensing 46(10), p. 3098-3103, doi:10.1109/TGRS.2008.919272.
Wilheit, T.T. and A. T. C. Chang, (1980), An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Sci. 15, 525–544.
Wiesmann, A., and C. Mätzler (1999). Microwave emission model of layered snowpacks. Remote Sens. Environ., 70(3) 307 - 316.
Wilheit, T.T. and A. T. C. Chang, (1980), An algorithm for retrieval of ocean surface and atmospheric parameters from the observations of the scanning multichannel microwave radiometer. Radio Sci. 15, 525–544.
WMO, (2017), Sea-Ice Information Services in the World, Edition 2017 (last revision 2017-08-02), WMO-No. 574 available from http://www.jcomm.info/index.php?option=com_oe&task=viewDocumentRecord&d…;
Xie, J., Counillon, F., Bertino, L., Tian-Kunze, X., and Kaleschke, L. (2016), Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system, The Cryosphere, 10, 2745-2761, doi: 10.5194/tc-10-2745-2016, 2016.
Ye, Y., M. Shokr, G. Heygster, and G. Spreen, (2016),Improving Multiyear Sea Ice Concentration Estimates with Sea Ice Drift. Remote Sens. 2016, 8, 397.
Ye Y. and G. Heygster, (2015), Arctic Multiyear Ice Concentration Retrieval from SSM/I Data Using the NASA Team Algorithm with Dynamic Tie Points. In: Lohmann G., Meggers H., Unnithan V., Wolf-Gladrow D., Notholt J., Bracher A. (eds) Towards an Interdisciplinary Approach in Earth System Science. Springer Earth System Sciences. Springer, Cham., doi: 10.1007/978-3-319-13865-7_12
Yueh, S. H., R. West, W. J. Wilson, F. K. Li, E. G. Njoku and Y. Rahmat-Samii, (2001), Error sources and feasibility for microwave remote sensing of ocean surface salinity, in IEEE Transactions on Geoscience and Remote Sensing, vol. 39, no. 5, pp. 1049-1060,. doi: 10.1109/36.921423
Yueh, S., W. Tang, A. Fore, A. Hayashi, Y. T. Song, and G. Lagerloef (2014), Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval, J. Geophys. Res. Oceans, 119, 5360–5379, doi:10.1002/2014JC009939.
Zabolotskikh, E., G. Irina, A. Myasoedov and B. Chapron, (2016), Detection and study of the polar lows over the arctic sea ice edge, IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016, pp. 7705-7707.
doi: 10.1109/IGARSS.2016.7731009
Zabolotskikh, E. and B. Chapron, (2017), Improvements in Atmospheric Water Vapor Content Retrievals Over Open Oceans From Satellite Passive Microwave Radiometers, in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 7, pp. 3125-3133. doi: 10.1109/JSTARS.2017.2671920
Zhao, E. C. Gao, X. Jiang, and Z. Liu, (2017), Land surface temperature retrieval from AMSR-E passive microwave data, Opt. Express, 25, A940-A952.
Zheng, J., T. Geldsetzer, and J. Yackel, (2017), Snow thickness estimation on first-year sea ice using microwave and optical remote sensing with melt modelling, In Remote Sensing of Environment, Volume 199, 2017, Pages 321-332, ISSN 0034-4257, doi:10.1016/j.rse.2017.06.038.
Zhou, L., Xu, S., Liu, J., and Wang, B.: On the retrieval of sea ice thickness and snow depth using concurrent laser altimetry and L-band remote sensing data, The Cryosphere, 12, 993-1012, doi: 10.5194/tc-12-993-2018, 2018.